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SMALL TWO-VARIABLE EXPONENTIAL DIOPHANTINE EQUATIONS 

ROBERT STYER 

ABSTRACT. We examine exponential Diophantine equations of the form abx - 

cdy + e. Consider a < 50, c < 50, lel < 1000, and b and d from the 
set of primes 2, 3, 5, 7, 11 , and 13. Our work proves that no equation with 
parameters in these ranges can have solutions with x > 18. Our algorithm 
formalizes and extends a method used by Guy, Lacampagne, and Selfridge in 
1987. 

INTRODUCTION 

While investigating a problem of Katai, the author [6] needed all solutions 
to hundreds of equations of the form abx = cdy + e, where b and d are 
small primes and the a, c, and e are reasonably small. This paper outlines 
an efficient method to examine many such equations and to prove that none 
have large solutions. When b and d are primes up to 13, when a < 50 and 
c < 50, and when lel < 1000, our work shows that no equation of the form 
abx = cdy + e has a solution with x > 18. 

When finding solutions to equations of the form abx = cdy + e, one can 
quickly and easily try all small values for x and y, say, up to 100. Our 
problem, of course, is to prove there are no larger solutions. 

This problem is deterministic, as one may see by using Baker's [1] estimates 
of logarithmic sums. B. M. M. De Weger [3] has combined Baker's work with 
his version of the L3 Basis Reduction Algorithm to solve a vast array of similar 
equations. Our goal, however, is to use straightforward congruential relations 
to solve these equations; in particular, we will expand upon a simple method 
noticed by Guy, Lacampagne, and Selfridge. 

Guy, Lacampagne, and Selfridge [4] use a curious method with equations 
such as 5 = 2x - 3Y. They begin with a known solution x = 5 and y = 3. 
Then they rearrange and factor to get (2a - 1)25 = (3b _ 1)33, where a = x - 5 
and b = y - 3. Since 27 divides 2a - 1 but 81 does not, a-0 mod 9 but a 0 
0 mod 27. This is the first crucial step. The next step is to bootstrap ourselves 
until we reach a contradiction. Since 32 divides 3b _ 1, b 0 mod 8. Then 
41138 _ 1, SO 41 12a - 1, consequently, a =_ 0 mod 20. Similarly, 1 11220 1 1, So 
11 13b _ 1 and hence b 0 mod 5. 7123 - 1, so 713b _ 1, SO b _ 0 mod 6. Now 
2711330- 1, so 27112a - 1 . Therefore, a _= 0 mod 135, but then a _ 0 mod 27, 
which is a contradiction, proving that there are no larger solutions. 
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This approach has two flaws. First, it requires that we know one solution. 
(By a recent result of Reese Scott [5], for equations of the form pm + c = qfn , the 
existence of one solution is often sufficient to prove that there are no others.) 
Second, this method looks rather haphazardly for suitable factorizations. Our 
goal is to remove these deficiencies. 

1. SOME EXAMPLES WITH b = 3 AND d = 7 

A typical equation might be 5 *3x = 2. 7Y - 23. Suppose that this equation 
had positive integer solutions for x and y with x > 3. Then we might view 
this equation mod 33, which shows that 

0 =- 2.7y - 23 mod 27, 

and so we can solve for y . One finds y _ 4 mod 9, since 7 has period 9 modulo 
27. We now have 

5.3x =2.74+9m-23 

for some integer m. 
We now observe that 19 and 37 divide 79 - 1, so 79 = 1 mod 19 and 

79 =-1 mod 37. Thus, our equation becomes 

5.3X =274-23 mod 19 

and similarly modulo 37. We can now solve for x, up to the period of 3 modulo 
19 (which happens to be 18). One finds that x -14 mod 18. 

Now consider the equation modulo 37. Again, one can solve for x up to the 
period of 3 modulo 37 (which also happens to be 18). But now one calculates 
that x -7 mod 18. Since x cannot be both 14 and 7 modulo 18, we have 
reached a contradiction, which proves that there cannot be any solution with 
x > 3. (It is easy to see there are no lower solutions.) 

As a second example, consider the equation 2.3x = 5 . 7Y + 19. One can 
find a solution x = 3 and y = 1 . So we assume a solution with x > 4. If we 
view this equation modulo 34, we can solve 

0 -5*7y + 19 mod 81 

for y to get y = 10 mod 27. Our equation is now 

2*3x = 5.710+27m + 19 

for some m. 
We saw that 19 and 37 divide 79 -1 , which divides 727_ 1 . Similar to the last 

example, we may view this equation modulo 19 and find that x _ 3 mod 18. 
If we consider this equation modulo 37, one also finds x -3 mod 18. One 
might have expected this, since x = 3 and y = 1 is a solution. 

Using [2], we note that 109 divides 727 _ 1, so 727 = 1 mod 109. Then 

2.3x _ 5*710 + 19 mod 109 

and so we can solve for x . One finds x _ 11 mod 27. This gives the desired 
contradiction, since when we view the equation modulo 37, x = 3 mod 9, but 
when we view it modulo 109, x = 2 mod 9. The contradiction proves that 
there are no solutions with x > 4. 

For a third example, consider the equation 29. 3x = 34. 7Y - 631 which has 
a solution x = 9 and y = 5. Assume it has a solution with x > 10. If one 
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views the equation modulo 39, one gets y _ 5 mod 38 . When we calculate x, 
we see that x _ 0 mod 9 modulo any of the primes 19, 37, or 109. 

But now consider the equation modulo 310. One finds that y -13127 mod 
39. We will use the prime 39367, which divides 73 -1 . The period of 3 modulo 
39367 is 39366 which is divisible by 9. We consider the equation modulo 39367 
to find that x -1 mod 9 (for speed in computation, it is easier not to compute 
x 6652 mod 39366). But this contradicts the value of x obtained when we 
used the primes 19, 37, and 109, hence we have shown there are no solutions 
with x > 10. 

Often much less calculation is needed to find a contradiction. For example, 
consider 2. 3x = 5 . 7Y + 11 . If we consider this equation modulo 3 we find 
no possible value for y, which proves that the equation has no solutions with 
x > 1 . A second example is the equation 2. 3x = 5 * 7Y + 13. Viewing this 
modulo 33 one finds y 3 mod 9. If one considers 2 3x =_ 5 * 73+13 mod 37, 
one finds that there is no possible value for x, hence this equation can have no 
solution with x > 3. 

Our goal is to examine millions of equations of the form abx = cdy + e. 
The proposed algorithm will first fix the b and d, then preprocess as much as 
possible before considering the a, c, and e parameters. For each equation in 
our range of parameters, we will look for a contradiction which proves that the 
equation can have no large solutions. In practice it takes very little calculation to 
find a suitable contradiction, so we are able to check large numbers of equations. 

2. THE ALGORITHM 

Fix coprime b and d. We begin by preprocessing whatever will involve only 
the b and d. We will note in our algorithm where we employ the preprocessed 
information, and will discuss later the details of the preprocessing. 

One then chooses values for the parameters a, c, and e. Consider one of 
these equations abx = cdy + e . Assume that we are only interested in equations 
with solutions x > h. View the equation abx = cdy + e modulo bh. Let f, 
be the period of d modulo bh, so d 1 _ I mod bh. (We would know /3 from 
our preprocessing.) 

Find the value for y, say yo, such that cdYo + e 0 mod bh . Often no such 
y exists, which contradicts the assumption that the equation has a solution with 
x > h. If there is a solution with x > h, then y must satisfy y -yo mod ,6 . 
Consider any reasonably small prime p which divides d - 1 with (ab, p) = 1 . 
(In our preprocessing step, we found this set of primes p .) Then df =_ 1 mod p . 

Now 
abx =cdYo+mf + e (mod p), 
abx cdYo + e (mod p). 

For each prime p in our set, we could now find a value for x, call it xp, so the 
left side equals the right side. There may not be any value for x which again 
contradicts the assumption that there is a solution with x > h. If there is a 
solution x > h, then xp- x mod ir(b, p), where ir(b, p) is the period of b 
modulo the prime p. (This period was found in the preprocessing step.) But 
suppose we find two of our primes Pi and P2 such that 

xP1 0 xP2 mod g. c. d. (r(b, p1), 7r(b, P2)) 
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This contradiction would prove that the equation has no solution with x > h. 
Crucial observation: If there is a solution x > h, then for each of our primes p, 
xp _ x mod i(b, p) . If there is no solution to abx - cCdy + e with x > h, then 
when a value of xp exists, it seems to be somewhat arbitrary modulo ir(b, p). 

Given our crucial observation, and the fact that the values of the 7r(b, p) 
tend to have common factors, one need only calculate a few xp until one finds 
primes whose x-values are inconsistent. Thus, in practice it seems to take very 
little calculation to find a contradiction, which would prove the equation has no 
solutions with x > h. We thus can check large ranges of values for a, c, and 
e. 

When b = 2, the procedure is easier because of Fermat primes. View a 2X= 
cdy + e modulo 2h . Now d has some period modulo 2h, say 2k . Then one 
can calculate yo such that any solution y- yo mod 2k. Suppose p = 2k + 1 
is a Fermat prime. Then d2k 1 mod p by Fermat's little theorem, and 2k - 

-1 mod p . Thus, 

a . 2x cdyo+m2k + e (mod p), 
a .2x cdyo + e (mod p), 

(a . 2x)2k (cdyo + e)2k (mod p), 

a2k (cdYo + e)2k (mod p). 

When there is no solution for x > h, numerical results suggest that the left 
and right sides of this final equation are as random as 2kth powers can be. 
Thus, with the prime 65537 and our choices of d, the probability seems to be 
about one out of two thousand that these two sides will be equal. 

3. THE PREPROCESSING STEP 

We now discuss the important preprocessing step. One can easily calculate by 
hand the period /1 of d mod any desired power of b. For instance, when b = 3 
and d = 7, /1 = /8(h) = 3. 3h-2 is the period of d modulo bh. Similarly, for 
3 and 5 we find /B(h) =2v3h-1 , and for 5 and 7 we find /B(h) = 4.5h-2. 

One now uses [2] or Macsyma to find small prime factors p of dA - 1, 
especially prime factors for which the period 7r(b, p) of b modulo p will 
be very small. The speed of our algorithm will depend on finding the small 
p and especially finding small 7r(b, p) with large common factors. In our 
preprocessing step, therefore, we need to find some small primes p that will 
give appropriate 7r(b, p). 

There always seemed to be an abundance of good candidates. For instance, 
when b = 3 and d = 7, with h = 3, the primes 19, 37 and 1063 divide d- I . 
Since 7r(b, 1063) is quite large, we ignore it. But fortunately, 7r(b, 19) = 
7r(b, 37) = 18, and so these are fortuitous prime divisors. Roughly half of 
all the equations abx = cdy + e will fail to have any corresponding X37 when 
viewed mod 37, and of the remaining, only about 1 out of 18 will have the 
X19-X37 mod 18. Now we might consider h = 6. We have several additional 
divisors, including 109, 811, 1621, 2377, and 3727. When we calculate the 
7r(b, p) , we notice two fortuitous outcomes: 7r(b, 1621) = 45 and 7r(b, 109) = 
27. The 1621 result is exceptional, since it suggests that roughly 35 out of 36 
equations will fail to have any x1621 . And those equations for which both x1621 
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and xlO9 exist have either a solution with x > h = 6 or else seem to have only 
roughly one chance in nine of satisfying xl62l _xio mod 9. Consequently, 
in our preprocessing step, we single out these primes as the ones to use in our 
algorithm. At this point, one could continue with a higher h, but in fact one 
can switch the roles of the b and d to locate fortuitous primes dividing powers 
of b minus one. 

These small primes are sufficient to show that almost all equations have no 
solutions with x > 6 (and after switching the roles of b and d, y > 5 ). When 
b = 3 and d = 7, only ten equations remained to be checked, but generally 
the number of equations left after running the Pascal program was a few dozen. 
One can actually find the solutions of these equations, choose an h larger than 
any solution found, and find any two prime divisors of dA - 1 whose 7r(b, p) 
have some reasonably large common factor. With so few remaining equations, 
no cleverness is needed in the preprocessing. Use Macsyma or another infinite- 
precision arithmetic program to find two such prime divisors and their periods, 
then apply the algorithm and find an appropriate contradiction for each remain- 
ing equation. 

4. CONCLUSIONS 

All equations of the form abx = cdy + e with b and d primes less than 
or equal to 13, with a < 50, with c < 50 and with lel < 1000 were tested 
as described. (Our method does not require b and d to be prime, but the 
application to the Katai problem will.) As the value of h was increased, the 
output was checked to make sure that all equations with solutions satisfying 
x > h did indeed pass the tests. This was done to detect programming er- 
rors. Indeed, the entire program was written for ease of coding and debugging, 
certainly not for speed of execution. For a given pair of primes b and d in 
our range, the program generally took about an hour of CPU time, but a few 
pairs ranged beyond two hours (depending on the fortuitous nature of the p 
and ir(b, p); d = 11 seemed to be the worst). While within Pascal's integer 
range, the programming was done in Pascal on a VAX63 10; the few remaining 
equations were handled using Macsyma on a MicroVax. Every equation in this 
range was shown to yield a contradiction, proving that no equation of the form 
abx = cdy + e with our range of parameters has a solution exceeding x = 18 
(the equation 25 .218 = 37 . 311 - 839 gave the largest solution). 

When b = 2, and one uses only the Fermat primes, one finds that only two 
equations fail to reach a contradiction in our Fermat prime test: the equation 
25.218 = 37.311 - 839 noted above and also 215 = 15 133 - 187. To use the 
Fermat method on the first equation, we need to set h > 18 but then the period 
of 3 modulo 219 exceeds 65537, so the Fermat prime method is useless for this 
equation. The second equation is interesting. The prime 65537 presumably has 
one chance out of two thousand of failing to prove that this equation has no 
higher solutions. But this second equation fails to reach a contradiction with 
the Fermat prime method. The equation is easily handled by going beyond the 
Fermat primes, that is, explicitly using the d = 13 value, but it illustrates the 
element of "chance" in finding a contradiction for each equation. 

We should say a few words about the crucial observation. This algorithm 
depends on the ability to efficiently find a contradiction. Our crucial observation 
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says that when no solution with x > h exists, then the values xp for our set 
of primes are unrelated, hence they usually will not be equivalent. To check 
whether the values of the xp are unrelated, we may consider the following 
results. Consider all equations of the form abx = cdy + e with b = 3, d = 7, 
a < 50, c < 50, and lel < 1000. Disregard all equations where a, b, c, 
d, and e are not mutually coprime, or which do not have a solution for yoo. 
Recall that the primes 19 and 37 divide 79 - 1. We calculate the x-values 
for each equation modulo 19 and 37. The 3237 equations with a solution 
x > 3 must have xi9 X37 mod 18, so we eliminate these. Of the remaining 
equations, only 73188 have solutions for both the xl9 and the X37 . For these 
73188 equations, one wonders whether the two x values are associated. If one 
calculates the correlation coefficient, one gets -0.02738. This suggests that 
there is no (linear) relationship between the values of x19 and X37. In fact, 
only 2935 of the equations have x19 X37 mod 18. The other 70253 equations 
yield the contradiction xi9 0 X37 mod 18 which proves they have no solution 
with x > 3. 
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